
Here is a sample VRPN code used to communicate with Optitrack through ROS:

Now with VRPN client we needed to write a launch file:

**
<launch>

 <arg name="server" default="192.168.1.2"/>

 <node pkg="vrpn_client_ros" type="vrpn_client_node" name="vrpn_client_node"
output="screen">

<rosparam subst_value="true">
 server: $(arg server)
 port: 3883

 update_frequency: 100.0
 frame_id: world

 # Use the VRPN server's time, or the client's ROS time.
 use_server_time: true
 broadcast_tf: true

 # Must either specify refresh frequency > 0.0, or a list of trackers to create
 refresh_tracker_frequency: 1.0
 #trackers:
 #- cf

</rosparam>
 </node>

</launch>
**

Make sure the configuration of your nodes is as follows: (You may check it using Rostopics)
Rostopic list
Two topics : crazyflie node and world frame
Which can be added to rviz for demonstration :

Run rviz rviz -f frame_name

In order to check whether it’s working or not we can check tf frames and we got below picture
where cf stands for our crazyflie drone.
Sample launch file :

Another important consideration here is to adjust the coordinate systems. Coming from
Optitrack to ROS there are some changes to consider. Optitrack coordinate system has y UP

whereas in ROS it’s Z up. So not only coordinates but also the position and acceleration values
needs to get swapped. Do the changes in VRPN .cpp file. (Here’s the ​link​ to our gitlab account:
). Here is a picture I found online to better show the changes applied:

In previous posts I talked about how the bright, shiny surface of our floor interfered with data
collection of Optitrack and I also mentioned how to put each of the cameras in Grayscale mode
to better see the area with high error rate. Try to move your origin away from those shiny area

https://git.uclalemur.com/Amir/vrpn_client_ros/tree/master

(by refining the ground plane in Optitrack Calibration). After calibrating the cameras and
adjusting the ambient light put at least 4 markers on the crazyfile as it would make it easier to be
detected (Also glue them to make it easier for later on). Markers should be spheres otherwise
sometimes there are not detectable by the cameras.

Finally It’s important to activate the kalman filtering on the crazyflie so that it would use the
position estimation for the purpose of set point flying or hovering. In order to modify the crazyflie
firmware to include the kalman filter I guess the easiest way would be to use the Virtual machine
provided by bitcraze. Here are the links to how to set up the virtual machine and how to activate
the kalman filter and flash/update the firmware.

- Installing vm:
https://www.bitcraze.io/getting-started-with-the-crazyflie-2-0/#inst-virtualmachine

https://www.bitcraze.io/getting-started-with-the-crazyflie-2-0/#inst-virtualmachine

- How to activate the Kalman Filter:
https://forum.bitcraze.io/viewtopic.php?t=3068

After that you may run the hver_vrpn.launch file updating the VRPN section of it (as we are
using vrpn_ros_client) and you should get sth like this::
https://youtu.be/reBzRPjIRBA

https://forum.bitcraze.io/viewtopic.php?t=3068
https://youtu.be/reBzRPjIRBA

